Extensions 1→N→G→Q→1 with N=C22 and Q=C4xD11

Direct product G=NxQ with N=C22 and Q=C4xD11
dρLabelID
C22xC4xD11176C2^2xC4xD11352,174

Semidirect products G=N:Q with N=C22 and Q=C4xD11
extensionφ:Q→Aut NdρLabelID
C22:1(C4xD11) = Dic11:4D4φ: C4xD11/Dic11C2 ⊆ Aut C22176C2^2:1(C4xD11)352,76
C22:2(C4xD11) = C4xC11:D4φ: C4xD11/C44C2 ⊆ Aut C22176C2^2:2(C4xD11)352,123
C22:3(C4xD11) = C22:C4xD11φ: C4xD11/D22C2 ⊆ Aut C2288C2^2:3(C4xD11)352,75

Non-split extensions G=N.Q with N=C22 and Q=C4xD11
extensionφ:Q→Aut NdρLabelID
C22.1(C4xD11) = D44.C4φ: C4xD11/Dic11C2 ⊆ Aut C221764C2^2.1(C4xD11)352,102
C22.2(C4xD11) = D44.2C4φ: C4xD11/C44C2 ⊆ Aut C221762C2^2.2(C4xD11)352,96
C22.3(C4xD11) = C22.2D44φ: C4xD11/D22C2 ⊆ Aut C22884C2^2.3(C4xD11)352,12
C22.4(C4xD11) = C44.46D4φ: C4xD11/D22C2 ⊆ Aut C22884+C2^2.4(C4xD11)352,29
C22.5(C4xD11) = C44.47D4φ: C4xD11/D22C2 ⊆ Aut C221764-C2^2.5(C4xD11)352,30
C22.6(C4xD11) = C23.11D22φ: C4xD11/D22C2 ⊆ Aut C22176C2^2.6(C4xD11)352,72
C22.7(C4xD11) = M4(2)xD11φ: C4xD11/D22C2 ⊆ Aut C22884C2^2.7(C4xD11)352,101
C22.8(C4xD11) = C8xDic11central extension (φ=1)352C2^2.8(C4xD11)352,19
C22.9(C4xD11) = Dic11:C8central extension (φ=1)352C2^2.9(C4xD11)352,20
C22.10(C4xD11) = C88:C4central extension (φ=1)352C2^2.10(C4xD11)352,21
C22.11(C4xD11) = D22:C8central extension (φ=1)176C2^2.11(C4xD11)352,26
C22.12(C4xD11) = C22.C42central extension (φ=1)352C2^2.12(C4xD11)352,37
C22.13(C4xD11) = C2xC8xD11central extension (φ=1)176C2^2.13(C4xD11)352,94
C22.14(C4xD11) = C2xC88:C2central extension (φ=1)176C2^2.14(C4xD11)352,95
C22.15(C4xD11) = C2xC4xDic11central extension (φ=1)352C2^2.15(C4xD11)352,117
C22.16(C4xD11) = C2xDic11:C4central extension (φ=1)352C2^2.16(C4xD11)352,118
C22.17(C4xD11) = C2xD22:C4central extension (φ=1)176C2^2.17(C4xD11)352,122

׿
x
:
Z
F
o
wr
Q
<